
Econometrics

A Summary



The Joint Distribution

• The joint distribution of discrete RVs X and Y is the 
probability that the two RVs simultaneously take on certain 
values, say x and y: That is, Pr(X = x, Y = y), like a cross-tab.

• Example: weather and commuting time.
– Let C denote commuting time. Suppose commuting time can be long – Let C denote commuting time. Suppose commuting time can be long 

(C = 1) or short (C = 0).

– Let W denote weather. Suppose weather can be fair (W = 1) or foul (W = 0).

– There are four possible outcomes: (C = 0, W = 0), (C = 0, W = 1), 
(C = 1, W = 0), (C = 1, W = 1).

– The probabilities of each outcome define the joint distribution of C and W:

Foul Weather (W=0) Fair Weather (W=1) Total

Short Commute (C=0) 0.15 0.25 0.4

Long Commute (C=1) 0.55 0.05 0.6

Total 0.7 0.3 1



Marginal Distributions

• When X,Yhave a joint distribution, we use the term marginal 
distribution to describe the probability distribution of X or Yalone.

• We can compute the marginal distribution of X from the joint 
distribution of X,Yby adding up the probabilities of all possible 
outcomes where X takes a particular value. That is, if Y takes one of k
possible values: ( )∑ ====
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The marginal distribution of weather is in blue. The marginal 
distribution of commuting time is in yellow.
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Foul Weather (W=0) Fair Weather (W=1) Total

Short Commute (C=0) 0.15 0.25 0.4

Long Commute (C=1) 0.55 0.05 0.6

Total 0.7 0.3 1



Conditional Expectation

• The mean of the conditional distribution of Y given X is called the 
conditional expectation (or conditional mean) of Y given X.

• It’s the expected value of Y, given that X takes a particular value.
• It’s computed just like a regular (unconditional) expectation, but 

uses the conditional distribution instead of the marginal.
– If Y takes one of k possible values y1, y2, ... , yk then:

k
– If Y takes one of k possible values y1, y2, ... , yk then:

• Example: in our commuting example, suppose a long commute 
takes 45 minutes and a short commute takes 30 minutes.  What’s 
the expected length of the commute, conditional on foul weather? 
What if weather is fair?
– Foul weather: 30*0.15/0.7 + 45*0.55/0.7 = 41.79 minutes
– Fair weather: 30*0.25/0.3 + 45*0.05/0.3 = 32.5 minutes
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Independence

• Often, we’re interested in quantifying the relationship between two RVs.
– linear regression methods (the focus of this course) do exactly this.

• When two RVs are completelyunrelated, we say they are independently 
distributed (or simply independent).
– If knowing the value of one RV (say X) provides absolutely no information

about the value of another RV (say Y), we say that X and Y are independent.
• Formally, X and Y are independent if the conditional distribution of Y given • Formally, X and Y are independent if the conditional distribution of Y given 

X equals the marginal distribution of Y:

Pr(Y = y | X = x) = Pr(Y = y)                       (*)

• Equivalently, X and Y are independent if the joint distribution of X and Y
equals the product of their marginal distributions:

Pr(Y = y, X = x) = Pr(Y = y)Pr(X = x)
– This follows immediately from (*) and the definition of the conditional 

distribution:
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Covariance

• A very common measure of association between two RVs is their 
covariance. It is a measure of the extent to which to RVs “move 
together.”

• Cov(X,Y) = σXY = E[(X – µX)(Y– µY)]
• In the discrete case, if X takes one of m values and Y takes one of k values, 

we have

( )( ) ( )∑∑
k m

• Interpretation: 
– if X and Y are positively correlated (σXY > 0) then when X > µX we also have Y  > µY, and 

when X < µX we also have Y  < µY (in expectation).  This means X and Y tend to move “in the 
same direction.” 

– Conversely, if σ< 0 then when X >µX we have Y<µY, and when X < µX we have Y  > µY (in 
expectation).  This means X and Y tend to move “in opposite directions.

– It is analogous to variance: the covariance of X and X is Var(X).
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Covariance and Correlation

• An unfortunate property of the covariance measure of association 
is that it is difficult to interpret: it is measured in units of X times 
units of Y.

• A “unit free” measure of association between to RVs is the 
correlation between X and Y: correlation between X and Y: 

– Notice that the numerator & denominator units cancel.

• Corr(X,Y) lies between -1 and 1.

• If Corr(X,Y) = 0 then we say X and Y are uncorrelated.

• Note that if Cov(X,Y) = 0 then Corr(X,Y) = 0 (and vice versa).
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Populations and Samples

• ECONOMETRIC INFERENCE ABOUT A POPULATION IS ALMOST 
ALWAYS BASED ON A SAMPLE!

• How do we choose which population members to sample?
• In a nutshell: choose them randomly.
• Example: Suppose I’m interested in the probability distribution of my commuting 

time to campus.  Rather than recording my commuting time every day, I could 
randomly select five days each month to record my commuting time.

– Population: every day– Population: every day
– Sample: the days I record my commuting time
– Use the sample data to estimate the population mean, variance, etc.

• Example: Political pollsters try to predict election outcomes.  They ask questions 
like “If there was an election today, which of these candidates would you vote for?”  
Rather than asking everyone in the country, they randomly select a group of 
individuals to answer the question.

– Population: everyone in the country
– Sample: the group selected to answer the question
– Use the sample to estimate the population mean, variance, etc.



Sampled Objects are Random Variables

• Suppose we’re interested in a variable X. 
• We’re going to select a sample of individuals/businesses or whatever 

and measure their value of X.
• The observed measurements of X that comprise our sample are called 

observations.  All the observations together are our data.
• Usually, we denote the n observations in the sample X1, X2, ... ,Xn

– If X was annual earnings, X is the first person’s response, X is the – If X was annual earnings, X1 is the first person’s response, X2 is the 
second, etc 

• Because we randomly select objects into the sample, the valuesof the 
observations X1, X2, ... ,Xn are random.
– We don’t know what values of X we’ll get in advance
– If we had chosen different members of the population, their values of X

would be different.
• Thus, given random sampling, we treat X1, X2, ... ,Xn as random 

variables.



Statistics and Sampling Distributions

• A statistic is any function of the sample data. 
– A (scalar-valued) function f(x1,…xN)is a single number associated with each 

set of values that x1,…,xN can take on.
• Because the sample data are random variables, so are statistics.
• We know that all random variables have probability distributions. 

�All statistics have probability distributions (pdfs&cdfs).
• In fact we have a special name for the probability distribution of a • In fact we have a special name for the probability distribution of a 

statistic: we call it a SAMPLING DISTRIBUTION.
• THIS IS THE MOST IMPORTANT CONCEPT IN THIS 

COURSE!!!
• Every statistic has a sampling distribution because if we drew a 

different sample, the data would take different values, and hence 
so would the statistic.

• The sampling distribution represents uncertainty about the 
population valueof the statistic because it is based on a sample, 
and not based on the whole population.



What the Sampling Distribution Tells Us

• Like any probability distribution, the sampling distribution tells us what 
values of the statistic are possible, and how likely the different values are.

• For instance, the mean of the sampling distributiontells us the expected 
value of the statistic. 
– It is a good measure of what value we expect the statistic to take.
– It also tells us where the statistic’s probability distribution is centered.

• The variance of the sampling distributiontells us how “spread out” the 
distribution of the statistic is. distribution of the statistic is. 
– It is usually a function of the sample size.
– It has a special name: the sampling varianceof the statistic (note: this is NOT 

THE SAME AS THE SAMPLE VARIANCE !)
– If the sampling variance is large, then it is likely that the statistic takes a value 

“far” from the mean of the sampling distribution.
– If the sampling variance is small, then it is unlikely that the statistic takes a 

value “far” from the mean of the sampling distribution.
– Usually, the sampling variance gets smaller as the sample size gets bigger.

• A picture shows this.



Estimation

• An estimator is a statistic that is used to infer the value of an 
unknown quantity in a statistical model

• The sample mean, sample variance, and sample covariance are 
all statistics.  But, they are also all called estimators, because 
they can be used to estimatepopulation quantities.

• That is, the thing we care about is a population quantity like the 
population mean µ. 

• That is, the thing we care about is a population quantity like the 
population mean µ. 

• We don’t get to observe µ directly, and we can’t measure its 
value in the population. 

• So we draw a sample from the population, and estimateµ using 
the sample.

• One way to do this is to compute the sample meanin our sample.
• It is a “good” estimate of the population mean, in a sense we’ll 

now make precise.

X



Estimators and Their Properties: Bias

• There are lots and lots of estimators, but not all are equally “good.”
– The sample mean is an estimator of the population mean.
– So is the median.  
– So is the value of one randomly selected observation.

• This is where the estimator’s sampling distribution comes in – it tells 
us the estimator’s properties.
– Whether it gives “good” or “bad” estimates of a population quantity.– Whether it gives “good” or “bad” estimates of a population quantity.

• Suppose we’re interested in a population quantity Q andR is a sample 
statistic that we use to estimate Q.
– e.g., Q might be the population mean, and R the sample mean

• We say R is an unbiased estimator of Q if E(R) = Q. 
�if R is an unbiased estimator of Q, then Q is the mean of the 

sampling distribution of R
• The biasof R is E(R) – Q. An unbiasedestimator has bias = 0.
• DRAW A PICTURE!!



Estimators and Their Properties: Efficiency

• Unbiasedness is a nice property, but it is “weak.”
– There can be many unbiased estimators of a given population quantity.
– Example: suppose we want to estimate the population mean µ. In an iid 

sample, the sample mean is an unbiased estimator of µ:
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– because E(Xi) = µ for every observation.
– Another unbiased estimator is the value of X1, because E(X1) = µ.

• How do we choose between unbiased estimators?
– We prefer the unbiased estimator with the smaller sampling variance.  

A picture shows the how the sampling distributions of the sample 
mean and a single observation’s value differ.

– Suppose we have two unbiased estimators of Q, call them R1 and R2. 
We say that R1 is more efficient than R2 if Var(R1) < Var(R2).
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Null and alternative hypotheses

• Suppose we’re interested in evaluating a specific claim about 
the population mean. For instance:
– “the population mean is 5”
– “the population mean is positive”

• We call the claim that we want to evaluate the null hypothesis, 
and denote it 

• We call the claim that we want to evaluate the null hypothesis, 
and denote it H0.
– H0 : µ = 5
– H0 : µ > 0

• We compare the null hypothesis to the alternative hypothesis, 
which holds when the null is false.  We will denote it H1.
– H1 : µ ≠ 5  (a “two-sided” alternative hypothesis)
– H1 : µ ≤ 0  (a “one-sided” alternative hypothesis)



How tests about the population mean 

work
• Step 1: Specify the null and alternative hypotheses.
• Step 2a: Compute the sample mean and variance
• Step 2b: Use the estimates to construct a new statistic, called a 

test statistic, that has a known sampling distribution when 
the null hypothesis is true (“under the null”)
– the sampling distribution of the test statistic depends on the – the sampling distribution of the test statistic depends on the 

sampling distribution of the sample mean and variance
• Step 3: Evaluate whether the calculated value of the test 

statistic is “likely” when the null hypothesis is true.  
– We reject the null hypothesis if the value of the test statistic  is 

“unlikely” 
– We do not reject the null hypothesis if the value of the test 

statistic is “likely” 
– (Note: thanks to Popper, we never “accept” the null hypothesis)



Example: the t-test

• Suppose we have a random sample of n observations from a 
N(µ,σ2) distribution.

• Suppose we’re interested in testing the null hypothesis:
H0 : µ = µ0

against the alternative hypothesis:against the alternative hypothesis:
H1 : µ ≠ µ0

• A natural place to start is by estimating the sample mean,

• We know that if the null hypothesis is true, then the 
sampling distribution of      is normal with mean µ0 and 
variance σ2/n.
– We say:     ~ N(µ0,σ2/n) under the null

– (draw a picture)
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Example: the t-test (continued)

• Because      ~ N(µ0,σ2/n) under the null, we know that

(recall we can transform any normally distributed RV to have a standard normal 
distribution by subtracting off its mean and dividing by its standard deviation)

X

( ) null  under the  1,0~
/

0 N
n

X
Z

σ
µ−=

distribution by subtracting off its mean and dividing by its standard deviation)

• If we knew σ2, we could compute Z, and this would be our test 
statistic:
– If Z is “far” from zero, it is unlikely that the null hypothesis is true, and we 

would reject it.
– If Z is “close” to zero, it is likely that the null hypothesis true, and we would 

not reject it.
– Why Z? Because we can look up its critical values in a table.

• Problems with this approach: 
– we don’t know σ2

– how do we quantify “close” and “far”?



Interval Estimation

• We’re done talking about hypothesis testing for now – but it 
will come up again soon in the context of linear regression.

• We talked earlier about estimators – statistics that we use to 
estimate a population quantity.

• The examples we saw (the sample mean, sample variance, 
sample covariance, etc.) are all called point estimatorssample covariance, etc.) are all called point estimators
because they give us a single value for the population quantity.

• An alternative to a point estimator is an interval estimator.
• This is an interval that contains a population quantity with a 

known probability.
• An interval estimator of a population quantity Q takes the form 

[L,U], where L and U are functions of the data (they’re 
statistics).

• We use the interval estimator [L,U] to make statements like:
Pr[L ≤ Q ≤ U] = 1- α (look familiar yet?)



Example: Confidence Interval for the 

Population Mean

• A 95% confidence interval for the population mean µ is an 
interval [L,U] such that:

Pr[L ≤ µ ≤ U] = 0.95
• How do we find the interval [L,U] such that this is true?
• An illustrative (but impossible) way:• An illustrative (but impossible) way:

1. Pick a random value µ1 and construct the T statistic to test 
H0 : µ = µ1 vs.  H1 : µ ≠ µ1 .

2. If we reject H0, then µ1 is not in the interval. If we do not reject 
H0, then µ1 is in the interval.

3. Pick another value µ2 and repeat.
4. Do this for all possible values of µ (this is why it’s impossible).

• Thankfully, there’s an easier way.



Notation

• If we have more (say k) independent variables, then we need to 
extend our notation further.

• We could use a different letter for each variable (i.e., X, Z, W, etc.) 
but instead we usually just introduce another subscript on the X. 

• So now we have two subscripts: one for the variable number (first 
subscript) and one for the observation number (second subscript). 

XXXXY εβββββ ++++++= ⋯

• What do the regression coefficients measure now? They are partial 
derivatives, or marginal effects. That is,

So, β1 measures the effect on Yi of a one unit increase in X1i
holding all the other variables X2i , X3i , ... , Xki and constant.
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Simple Linear Regression

• Suppose now that we have a linear regression model with one 
independent variable and an intercept:

• Suppose also that 

0 1i i iY Xβ β ε= + +
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OLS Coefficients are Sample Means

• The estimated coefficients are weighted averages of the Y’s:
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• It is a function of the data (a special kind of sample mean), and so it 
is a statistic.

• It can be used to estimate something we are interested in: the 
population value of 

• Since it is a statistic, it has a sampling distribution that we can 
evaluate for bias and variance.
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OLS estimator is unbiased
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Variance of OLS estimator

• Variance is more cumbersome to work out by 

hand, so I won’t do it:

• Top looks like the

• “even simpler” model.
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• Where V-hat is the

• sample variance of X

• V(X)=E[X2]-(E[X])2
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How Do You Get Low Variance?

• The OLS estimator is unbiased, so it centers on 

the right thing.

• Its variance                                    has 3 pieces:

• N
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• V(X)

• sigma-squared

• (draw them all)
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The Classical Assumptions

1. The regression model is linear in the coefficients, correctly 
specified, and has an additive error term .

2. The error term has zero population mean: E(ε) = 0.
3. All independent variables are uncorrelated with the error term : 

Cov(Xi,εi) =  0 for each independent variable Xi .
4. Errors are uncorrelated across observations: Cov(εi,εj) = 0 for two 4. Errors are uncorrelated across observations: Cov(εi,εj) = 0 for two 

observations i and j (no serial correlation).
5. The error term has constant variance: Var(εi) = σ2 for every i (no 

heteroskedasticity).
6. No independent variable is a perfect linear function of any other 

independent variable (no perfect multi-collinearity ).
7. The error terms are normally distributed.  We’ll consider all the 

others, and see what we get.  Then, we’ll add this one.



Specification

• Every time we write down a regression model (and estimate it!) we 
make some important choices:
– what independent variables belong in the model?
– what functional form should the regression function take (i.e., 

logarithms, quadratic, cubic, etc.)?  
• Dummy Variables• Dummy Variables

– what kind of distribution should the errors have?
• Usually, we look to economic theory (and some common sense!) to 

guide us in making these decisions.
• The particular model that we decide to estimate is the culmination of 

these choices: we call it a specification
– a regression specification consists of the model’s independent variables, 

the functional form, and an assumed error distribution



Omitted Variables

• Suppose the true DGP is:
Yi = β0 + β1X1i + β2X2i + εi

but we incorrectly estimate the regression model:
Yi = β0

* + β1
*X1i + εi*

– example: Y is earnings, X1 is education, and X2 is “work ethic” – we 
don’t observe a person’s work ethic in the data, so we can’t include it in 
the regression modelthe regression model

• That is, we omit the variable X2 from our model
• What is the consequence of this?
• Does it mess up our estimates of β0 andβ1?

– it definitely messes up our interpretation of β1. With X2 in the model, 
β1 measures the marginal effect of X1 on Y holding X2 constant.  We 
can’t hold X2 constant if it’s not in the model.

– Our estimated regression coefficients may be biased
– The estimated β1 thus measures the marginal effect of X1 on Ywithout 

holding X2 constant. Since X2 is in the error term, the error term will 
covary with X1 if X2 covaries with X1 .



Omitted Variables May Cause Bias
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The estimated parameter is biased, with bias linear in the true parameter on 

the left-out variable, and the covariance of the left-out variable with the 

included variable.
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Violating Assumption 3: Cov(Xi,εi) = 0 

• We saw that correlated missing regressors 
induce bias.

• So does biased sample selection and reverse 
causality.causality.

• Consider correlated missing regressors.



Endogeneity in a Scatter-Plot

• Endogeneity is easy to draw.

• Consider a 1 variable (with intercept) model

• Let the conditional mean of the error term 

also rise linearly with the included variablealso rise linearly with the included variable

• Draw the true regression line and the data

• The OLS regression line will pick up both the 

slope of Y in X and the slope of the conditional 

mean of the error with respect to X.



General Endogeneity Bias

• Endogeneity bias shows up in the Ballentine 

diagrams.

• Correlated missing regressor: x2 is invisible.

• What does the OLS estimator do to the (x1,x2) • What does the OLS estimator do to the (x1,x2) 

overlap?

• more generally, some of what looks like (x1,y) 

is really the model error term, and not (x1,y).



Correcting for Endogeneity

• Endogeneity is like pollution in the X.

• You need information that allows you to pull 

the pollution out of the X.

• Including missing regressors is like identifying • Including missing regressors is like identifying 

the pollution exactly, so that you can just use 

the X that is uncorrelated with that pollution.

• Alternatively, you could find a part of the 

variation in X that is unpolluted by 

construction.



Instrumental Variables

• Instruments are variables, denoted Z, that are 

correlated with X, but uncorrelated with the 

model error term by assumption or by 

construction.construction.

• Cov(Z,e)=0, so in the Ballentine, Z and the 

error term have no overlap.

• But, (Z,X) do overlap



2-Stage Least Squares

• Regress X on Z

– generate      =E[X|Z], the predicted value of X given Z.

– This is “clean”.  Since Z is uncorrelated with the model 

error term, so is any linear function of Z.

• Regress  Y on 

X̂

X̂• Regress  Y on 

• This regression does not suffer from endogeneity

• But it does suffer from having less variance in its 

regressor.

X̂



Violating Assumption 4

• Recall Assumption 4 of the CLRM: that all errors have the same variance. That 
is,

Var(εi) = σ2 for all i = 1,2,…,n
• Heteroskedasticityis a violation of this assumption.  It occurs if different 

observations’ errors have different variances. For example,
Var(εi) = σi

2

– In this case, we say the errors are heteroskedastic.
• Because heteroskedasticityviolates an assumption of the CLRM, we know that • Because heteroskedasticityviolates an assumption of the CLRM, we know that 

least squares is not BLUE when the errors are heteroskedastic.
• Heteroskedasticity occurs most often in cross-sectionaldata. These are data 

where observations are all for the same time period (e.g., a particular month, 
day, or year) but are from different entities (e.g., people, firms, provinces, 
countries, etc.)



Inefficiency

• Why is OLS inefficient when we have pure 
heteroskedasticity?

• It is because there is another linear estimator 
that uses the data better, and can deliver a lower-
variance estimated coefficientvariance estimated coefficient

• Eg, what if some observations had zero-variance 
on their errors, but others had positive variance

– A linear estimator that delivers a lower-variance 
coefficient is to run OLS on only those observations 
with zero-variance.  Trash all the rest of the data



What to do if errors are heteroskedastic …

• If you find evidence of heteroskedasticity – whether through a formal 
test by looking at residual plots – you have several options

1. Use OLS to estimate the regression and “fix” the standard errors
A. We know OLS is unbiased, it’s just that the usual formula for the standard 

errors is wrong (and hence tests can be misleading)
B. We can get consistent estimates of the standard errors (as the sample size 

goes to infinity, a consistent estimator gets arbitrarily close to the true goes to infinity, a consistent estimator gets arbitrarily close to the true 
value in a probabilistic sense) called White’s Heteroskedasticity-
Consistentstandard errors

C. When specifying the regression in EViews, click the OPTIONS tab, check 
the “Coefficient Covariance Matrix” box, and the “White” button

D. Most of the time, this approach is sufficient
2. Try Weighted Least Squares (WLS) – if you know the source of the 

heteroskedasticity and want a more efficient estimator
3. Try re-defining the variables – again, if you think you understand the 

source of the problem (taking log of dependent variable often helps)



Violating Assumption 5

• Serial correlation occurs when one observation’s error term (εi) is 
correlated with  another observation’s error term (εj): Corr(εi, εj) ≠ 0

• We say the errors are serially correlated
• This usually happens because there is an important relationship 

(economic or otherwise) between the observations. Examples:
– Time series data(when observations are measurements of the same 

variables at different points in time)variables at different points in time)
– Cluster sampling (when observations are measurements of the same 

variables on related subjects, e.g., more than one member of the same 
family, more than one firm operating in the same market, etc.)

• Example: Suppose you are modeling calorie consumption with data on a 
random sample of families, one observation for each family member. 
Because families eat together, random shocks to calorie consumption (i.e., 
errors) are likely to be correlated within families.

• Serial correlation violates Assumption 4 of the CLRM. So we know 
that least squares is not BLUE when errors are serially correlated.



Consequences of Serial Correlation

• We know that serial correlation violates Assumption 4 of the CLRM, and hence 
OLS is not BLUE. What more can we say?

1. OLS estimates remain unbiased
We only need Assumptions 1-3 to show that the OLS estimator is unbiased, hence 

a violation of Assumption 4 has no effect on this property
2. The OLS estimator is no longer the best (minimum variance) linear unbiased 

estimator
Serial correlation implies that errors are partly predictable. For example, with Serial correlation implies that errors are partly predictable. For example, with 

positive serial correlation, then a positive error today implies tomorrow’s 
error is likely to be positive also. The OLS estimator ignores this 
information; more efficient estimators are available that do not.

3. Standard formulae for standard errors of OLS estimates are wrong.
Standard formulae for OLS standard errors assume that errors are not serially 

correlated – have a look at how we derived these in lecture 12 (we needed to 
use assumption 4 of the CLRM). Since our t-test statistic depends on these 
standard errors, we should be careful about doing t-tests in the presence of 
serial correlation.



What to do if errors are serially correlated …

• If you find evidence of serial correlation – whether through a formal 
test or just by looking at residual plots – you have several options 
available to you

1. Use OLS to estimate the regression and “fix” the standard errors
A. We know OLS is unbiased, it’s just that the usual formula for the 

standard errors is wrong (and hence tests can be misleading)
B. We can get consistent estimates of the standard errors (as the sample B. We can get consistent estimates of the standard errors (as the sample 

size goes to infinity, a consistent estimator gets arbitrarily close to the 
true value in a probabilistic sense) called Newey-Weststandard errors

C. When specifying the regression in EViews, click the OPTIONS tab, 
check the “coefficient covariance matrix” box, and the “HAC Newey-
West” button

D. Most of the time, this approach is sufficient
2. Try Generalized Least Squares (GLS) – if you want a more efficient 

estimator



Violating Assumption 6: 

• Recall we assume that noindependent variable is a perfect linear function of any 
other independent variable.

– If a variable X1 can be written as a perfect linear function of X2 , X3 , etc., then we say 
these variables are perfectly collinear.  

– When this is true of more than one independent variable, they are perfectly 
multicollinear.

• Perfect multicollinearity presents technical problems for computing the least 
squares estimates.
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squares estimates.
– Example: suppose we want to estimate the regression: 

Yi = β0 + β1X1i + β2X2i + εi where X1 = 2X2 + 5.  
That is, X1 andX2 are perfectly collinear.  Whenever X2 increases by one unit, we see X1
increase by 2 units, and Y increase by 2β1 + β2 units.  It is completely arbitrary whether 
we attribute this increase in Y to X1, to X2, or to some combination of them.  If X1 is in the 
model, then X2 is completely redundant: it contains exactly the same information as X1
(if we know the value of X1, we know the value of X2 exactly, and vice versa).  Because 
of this, there is no unique solution to the least squares minimization problem. Rather, 
there are an infinite number of solutions.

– Another way to think about this example: β1 measures the effect of X1 on Y, holding X2
constant.  Because X1 and X2 always vary (exactly) together, there’s no way to estimate 
this.



Imperfect Multicollinearity

• It is quite rare that two independent variables have an exact linear relationship 
– it’s usually obvious when it does happen: e.g., the “dummy variable trap”

• However it is very common in economic data that two (or more) independent variables 
are strongly, but not exactly, related

– in economic data, everything affects everything else
• Example:

– perfect collinearity: X1i = α0 + α1X2i

– imperfect collinearity: X1i = α0 + α1X2i + ζi      where ζi is a stochastic error term– imperfect collinearity: X1i = α0 + α1X2i + ζi      where ζi is a stochastic error term
• Examples of economic variables that are strongly (but not exactly) related:

– income, savings, and wealth
– firm size (employment), capital stock, and revenues
– unemployment rate, exchange rate, interest rate, bank deposits

• Thankfully, economic theory (and common sense!) tell us these variables will be 
strongly related, so we shouldn’t be surprised to find that they are ...

• But when in doubt, we can look at the sample correlation between independent 
variables to detect imperfect multicollinearity

• When the sample correlation is big enough, Assumption 6 is “almost” violated



Consequences of Multicollinearity

• Least squares estimates are still unbiased

• recall that only Assumptions 1-3 of the CLRM 

(correct specification, zero expected error, 

exogenous independent variables) are exogenous independent variables) are 

required for the least squares estimator to be 

unbiased

• since none of those assumptions are violated, 

the least squares estimator remains unbiased


