Econometrics

A Summary



The Joint Distribution

e Thejoint distribution of discrete RV andY is the
probability that the two RVs simultaneously take on certain
values, sayxandy: That is, PrK =X, Y =Yy), like a cross-tab.

 Example: weather and commuting time.

— Let C denote commuting time. Suppose commuting time ealoig
(C=1) or shortC = 0).

— LetWdenote weather. Suppose weather can beVias ) or foul V= 0).

— There are four possible outcomeS:0,W=10), C=0,W=1),
(C=1,W=0),C=1,Ww=1).

— The probabilities of each outcome define the jdistribution ofC andW.

Foul Weather (W=0) Fair Weather (W=1) Total

Short Commute (C=0) 0.15 0.25 0.4
Long Commute (C=1) 0.55 0.05 0.6
Total 0.7 0.3 1




Marginal Distributions

 WhenX,Yhave a joint distribution, we use the temmarginal
distribution to describe the probability distribution Xfor Y alone.

 We can compute the marginal distributionXdrom the joint
distribution ofX,Y by adding up the probabilities of all possible
outcomes wheri takes a particular value. That isyitakes one ok

possmlevalqgr()( X) = ZP'(X xY=y)

Foul Weather (W=0) Fair Weather (W=1) Total
Short Commute (C=0) 0.15 0.25 0.4
Long Commute (C=1) 0.55 0.05 0.6
Total The marainal disti 2/ 0.3 N

distribution of commuting time is in yellow.



Conditional Expectation

The mean of the conditional distribution¥givenXis called the
conditional expectation(or conditional mean) of Y given X.

It's the expected value ™, given thatX takes a particular value.

It's computed just like a regular (unconditionatpectation, but
uses the conditional distribution instead of thegmeal.

— If Ytakes one ok possil?(le valuey, v,, ..., \ then
E(Y X =x)=2y Py =y | X =x)

=1

Example: in our commuting exampkjppose a long commute
takes 45 minutes and a short commute takes 30 mirag What'’s
the expected length of the commute, conditiondoohweather?
What if weather is fair?

— Foul weather: 30*0.15/0.7 + 45*0.55/0.7 = 41.79 ut@s
— Fair weather: 30*0.25/0.3 + 45*0.05/0.3 = 32.5 nt@wu



Independence

Often, we're interested in quantifying the relationship betweerRvis
— linear regression methods (the focus of this course) do exactly this.

When two RVs areompletelyunrelated, we say they arelependently

distributed (or simplyindependen).

— If knowing the value of one RV (s&) providesabsolutely no information
about the value of another RV (sdy we say thaK andY are independent.

Formally,X andY are independent if the conditional distributiorY given
X equals the marginal distribution ¥f

PriY=y | X=X =Pr(¥=y) (*)
Equivalently X andY are independent if the joint distributionXfandY
equals the product of their marginal distributions:
PriY=y, X=X =Pr(Y = yPr(X = x)

—  This follows immediately from (*) and the definition of the conditional
distribution:

Pr(X =x,Y =y)

A i g




Covariance

A very common measure of association between twse iRWheir
covariance It is a measure of the extent to which to RVs Vo
together.”

CoMUX,Y) = oyxy = E[(X—=u) (Y —uy)]
In the discrete case, Xtakes one omvalues and takes one ok values,

we have
k m

CoMX,Y) =23 (= s — 14, )P{X =%, Y = y;)

=1 j=1
Interpretation:

— if XandY are positively correlated¢, > 0) then wherX > u, we also haver > uy, and
whenX < i, we also hav&y < u, (in expectation). This measandY tend to move “in the
same direction.”

— Conversely, iio< 0 then wherK >u, we haveY<uy, and wherX < uy we haveY >y (in
expectation). This meansandY tend to move “in opposite directions.

— Itis analogous to variance: the covarianc ahdX is Var(X).



Covariance and Correlation

An unfortunate property of the covariance measitigssociation
IS that it is difficult to interpret: it is measulen units ofX times
units ofY.

A “unit free” measure of association between to R/ihe
correlation betweerX andY:

Co{X,Y) _ o4

| Nar(XVarly) o0,
— Notice that the numerator & denominator units cance

Corr(X,Y) lies between -1 and 1.
If Corr(X,Y) =0 then we sa)X andY areuncorrelated.
Note that IfCouX,Y) = 0 thenCorr(X,Y) = 0 (and vice versa).

Corr(X,Y)=py, =



Populations and Samples

ECONOMETRIC INFERENCE ABOUT A POPULATION IBLMOST
ALWAYS BASED ON A SAMPLE!

How do we choose which population members to sample?
In a nutshell: choose therandomly.

Example: Suppose I'm interested in the probability distribution of emyrauting
time to campus. Rather than recording my commuting ¢wveey day| could
randomly select five days each month to record my commuting time.

— Population: every d:

— Sample: the days | record my commuting time

— Use the sample data to estimate the population hwaaiance, etc.
Example: Political pollsters try to predict election outconigsey ask questions
like “If there was an election today, which of these candidatesdayou vote for?”
Rather than askingveryone in the countryhey randomly select a group of
individuals to answer the question.

— Population: everyone in the country

— Sample: the group selected to answer the question

— Use the sample to estimate the population meamgnae, etc.



Sampled Objects are Random Variables

Suppose we’'re interested in a variakle

We’re going to select a sample of individuals/basses or whatever
and measure their value Xf

The observed measurements<dhat comprise our sample are called
observations All the observations together are olata.

Usually, we denote theobservations in the samp#g, X, ... , X

— If Xwas annual earningX; is the first person’s respon¢X, is the
second, etc

Because we randomly select objects into the sarti®aluesof the
observation&;, X,, ... ,X, are random.

— We don’t know what values of we’ll get in advance

— If we had chosen different members of the poputatioeir values oK
would be different.

Thus, given random sampling, we trégt X,, ... ,X, as random
variables.



Statistics and Sampling Distributions

A statistic is any function of the sample data.

- A ﬁscalar-valuedjunction f(x1,...XN)is a single number associated with each
set of values that x1,...,XxN can take on.

Because the sample data are random variablese sbadistics.
We know that all random variables have probabdistributions.

=>» All statistics have probability distributions (pdfs&cdfs).

In fact we have a special name for the probabdisgribution of &
statistic: we call it &AMPLING DISTRIBUTION.

THIS IS THE MOST IMPORTANT CONCEPT IN THIS
COURSE!M

Every statistic has a sampling distribution becaluse drew a
different sample, the data would take different valies, and hence
so would the statistic.

The sampling distribution represemtscertainty about the
population value of the statistic because it is based on a sample,
and not based on the whole population.



What the Sampling Distribution Tells Us

Like any probability distribution, the sampling tlibution tells us what
values of the statistic are possible, and howyikle¢ different values are.

For instance, themean of the sampling distributiontells us the expected
value of the statistic.

It is a good measure of what value we expect the statistikeo ta
It also tells us where the statistic’s probability distributenentered.

Thevariance of the sampling distributiontells us how “spread out” the
distribution of the statistic i

It is usually a function of the sample size.

It has a special name: teampling varianceof the statistic (note: this is NOT
THE SAME AS THESAMPLE VARIANCE )

If the saml[oling variance is large, then itikely that the statistic takes a value
“far” from the mean of the sampling distribution.

If the sampling variance is small, then iurslikely that the statistic takes a
value “far” from the mean of the sampling distribution.

Usually, the sampling variance gets smaller as the samplgeig bigger.

A picture shows this.



Estimation

An estimator Is a statistic that is used to infer the value of an
unknown quantity in a statistical model

The sample mean, sample variance, and sample covariance are
all statistics. But, they are also all calestimators, because
they can be used &stimatepopulation quantities.

That is, the thing we care about is a population quantity lik
population meaju.

We don't get to observedirectly, and we can’t measure its
value in the population.

So we draw a sample from the population, asitinate using
the sample. X

One way to do this is to compute tample meann our sample.

It is a “good” estimate of the population mean, in a sense we'll
now make precise.



Estimators and Their Properties: Bias

There are lots and lots of estimators, but naa@lequally “good.”
— The sample mean is an estimator of the population mean.
— So is the median.
— So is the value of one randomly selected observation.

This is where the estimator’'s sampling distributbtmmes in — it tells
us the estimator’s properties.

— Whether it gives “good” or “bad” estimates of a population qua

Suppose we're interested in a population qguaQigndR is a sample
statistic that we use to estim&je

— e.g.,Q might be the population mean, aRdhe sample mean
We sayR is anunbiased estimator ofQ if E(R) = Q.

=>if Ris an unbiased estimator of), then Q is the mean of the
sampling distribution of R

Thebiasof Ris E(R) — Q.An unbiasedestimator has bias = 0.
DRAW A PICTURE!



Estimators and Their Properties: Efficiency

 Unbiasedness is a nice property, but it is “weak.”
— There can be many unbiased estimators of a given population quantity.

— Example: suppose we want to estimate the population mearan iid
sample, the sample mean is an unbiased estimator of

E(X)= E(%iz;:xi]:%E(éxij:%Z;:E(xi):%gu:%ny:u

— becausd(X,) = u for every observation.
— Another unbiased estimator is the valuXgfbecausé&(X,) = u.

e How do we choose between unbiased estimators?

— We prefer the unbiased estimator with the smader®ing variance.
A picture shows the how the sampling distributiohthe sample
mean and a single observation’s value differ.

— Suppose we have two unbiased estimatof3,chll themR
We say thaR, is more efficientthanR, if Var(R,) < Var(Rj.

andR,.



Null and alternative hypotheses

e Suppose we're interested in evaluating a specific claim about
the population mean. For instance:

— “the population mean is 5”
— “the population mean is positive”
* We call the claim that we want to evaluatenull hypothesis,
and denote H,,.
— Hp:ip=5
— Hy:pn>0
* We compare the null hypothesis to #igernative hypothesis
which holdswhen the null is false We will denote iH,.
— H;:p#5 (a“two-sided” alternative hypothesis)
— H,;: n<0 (a“one-sided” alternative hypothesis)



How tests about the population mean

work

Step 1: Specify the null and alternative hypotheses.
Step 2a: Compute the sample mean and variance

Step 2b: Use the estimates to construct a new statistial ealle
test statistic that has &nown sampling distribution when
the null hypothesisistrue (“under the null”)
— the sampling distribution of the test statistic elegs on thi
sampling distribution of the sample mean and vaean
Step 3: Evaluate whether the calculated value of the test
statistic is “likely” when the null hypothesis is true.
— Wereject the null hypothesis if the value of the test statiss
“unlikely”
— We do not rejectthe null hypothesis if the value of the test
statistic is “likely”
— (Note: thanks to Popper, we never “accept” the nytiothesis)



Example: the t-test

Suppose we have a random sample atbservations from a
N(u,02) distribution.
Suppose we're interested in testing the null hypothesis:
Ho =y
against the alternative hypothe
Hyip# po
A natural place to start is by estimating the sample mgan,
We know thatf the null hypothesis is trug then the

sampling distribution ofX is normal with meapand
variances?/n.

— We say:X ~ N{y,02/n) under the null
— (draw a picture)



Example: the t-test (continued)

BecauseX ~ Mg,6%/n) under the null, we know that

7=2"H _ N(01) under thenull

J/\/ﬁ

(recall we can transform any normally distributed RV to hawaradard normal
distribution by subtracting off its mean and dividing by its standard dev)

If we knewo?, we could computé, and this would be our test
statistic:

— If Zis “far” from zero, it is unlikely that the null hypothesisngd, and we
would reject it.

— If Zis “close” to zero, it is likely that the null hypothesis traed we would
not reject it.

— Why Z? Because we can look up its critical values in a table.
Problems with this approach:

— we don’t knowo?
— how do we quantify “close” and “far"?



Interval Estimation

We're done talking about hypothesis testing for now — but it
will come up again soon in the context of linear regression.

We talked earlier about estimators — statistics that we use to
estimate a population quantity.

The examples we saw (the sample mean, sample variance,
sample covariance, etc.) are all capoint estimators
because they give us a single value for the population quantity.

An alternative to a pomt estimator is iaterval estimator.

This is an interval that contains a population quantity with a
known probability.

An interval estimator of a population guantipakes the form
[L,U], whereL andU are functions of the data (they’re
statistics).

We use the interval estimatdr,{J] to make statements like:
PriL<Q<U]=1-a (look familiar yet?)



Example: Confidence Interval for the
Population Mean

A 95% confidence interval for the population mgas an
interval [L,U] such that:
PriL <p<U]=0.95

How do we find the interval] U] such that this is true?

An illustrative (but impossible) wa

1. Pick a random value, and construct thé statistic to test
Hotu=pg vS. Hytp#py.

2. If we rejectH,, theny, Is notin the interval. If we do not reject
H,, theny, isin the interval.

3. Pick another valug, and repeat.
4. Do this for all possible values pf(this Iis why it’'s impossible).

Thankfully, there’s an easier way.



Notation

If we have more (sak) independent variables, then we need to
extend our notation further.

We could use a different letter for each variabke,(X, Z, Wetc.)
but instead we usually just introduce another suitson theX.

So now we have two subscripts: one for the variablaber (first
subscript) and one for the observation number (ssabscript).

Yi :,80 +131X]j +182X2i +,33X3i +"'+,3kxki t&
What do the regression coefficients measure novey ahepartial
derivatives, or marginal effects That is,

aY, aY, aY,
181:_ '82:_ ...ﬁk:_
axli aXzi ain
So0,5,; measures the effect dhof a one unit increase iX;;
holding all the other variablesX, , X5, ..., X; and & Constant.



Simple Linear Regression

Suppose now that we have a linear regression nvatebne
independent variable and an intercept= B +B.X +&
[ 0 149 i

Suppose also that

E[£] =0 and B(& )] =o? and E(Sié‘,-) =0 foralli |

Now, define an estimator as the numjger  thatmiges the sum
of the squared prediction error

S =Y‘,éo‘,él>§

Min e =3 (- A




OLS Coefficients are Sample Means

The estimated coefficients are weighted averagéseof's:

Q:;(fi-?)(viz-‘v):i (x-%) 1
Y-x) o TE(x-x)

i=1 i=1

b=Y-BX=Y|=-X n(x‘_y)z—% Y
' > (% -X)

i=1

It is a function of the data (a special kind of gégmean), and so it
IS astatistic

It can be used to estimate something we are Iineet@s: the
population value ofz

Since it Is a statistic, it has a sampling disttib that we can
evaluate for bias and variance.



OLS estimator is unbiased

Sx R0 -9 [S(- A amxee -y

=E| B,=12— —|= = : —
>(x-%) 2(x =)

i=1 | _ i=1

_i(xi _y)(lgo-l_ﬂl)(i + & _:80_/81?_2)
= E| iz _ —
> (x - %)

i=1

S(x-X)(x-%)| | S(x-Rs| | S(x-%)e
= BE|= + E| = ~E| iz

2(x-X] >(x) >(x7)

=p+0+0=p,




Variance of OLS estimator

Variance is more cumbersome to work out by

hand, so | won’t do it: Var(B,) = 1 2

g
Top looks like the 3 x?)-nx
“even simpler” model. 1 :
- g
1Gy2 | 32
1 >
Where V-hat is the = g

sample variance of X
V(X)=E[X*]-(E[X])*

Var( X)



How Do You Get Low Variance?

e The OLS estimator is unbiased, so it centers on
the right thing.

* |ts variance Var(A,)=
e N

e V(X)

e sigma-squared

o’ has 3 pieces:

nVar( X)

e (draw them all)



The Classical Assumptions

The regression modelliaear in the coefficients correctly
specified and has aadditive error term.

The error term hamero population mean E(¢) = 0.

All independent variables anacorrelated with the error term:
CoV X&) = O for each independent variable

Errors are uncorrelated across observatiCo\(g;,¢;) = 0 for two
observations andj (no serial correlation).

The error term has constant variarvaais;) = o2 for everyi (no
heteroskedasticity.

No independent variable iarfect linear function of any other
Independent variable (rmmerfect multi-collinearity ).

The error terms are normally distributadfe’ll consider all the
others, and see what we get. Then, we’ll addahes



Specification

* Every time we write down a regression model (arionede it!) we
make some important choices:
— what independent variables belong in the model?
— what functional form should the regression functake (i.e.,
logarithms, quadratic, cubic, etc.)?
 Dummy Variable
— what kind of distribution should the errors have?
e Usually, we look to economic theory (and some comisense!) to
guide us in making these decisions.
» The particular model that we decide to estimathesculmination of
these choices: we call itspecification

— aregression specification consists of the modedispendent variables,
the functional form, and an assumed error distigiout



Omitted Variables

Suppose thaue DGPs:
Y = fot PiXe + PoXoi g
but we mcorrectly estimate the regressmn model:
Yi=PBg + B Xt g
— example: Y IS earnlngs X6 educatlon and Xs “work ethic” — we
don't observe a person’s work ethic in the atawsaocan‘t Include it in
the regression moc

That is, weomit the variableX, from our model
What is the consequence of this?
Does it mess up our estimatesfghndg;?

— it definitely messes up oumterpretation of g,. With X, in the model,
p1measures the marginal effectgfon’Y holding X, constant We
can’t holdX, constant if it's not in the model.

— Our estlmated regression coefficients maypiased

— The estimated, thus measures the marginal effeckobnY without
holding X, constant SinceX, is in the error term, the error term will
covary WlthX If X, covaries WlthX



Omitted Variables May Cause Bias
Moo 2= X) (Y=Y | XX = X)Bot B X+ B2 %48 — B B % B % E)
AE TS xRy ] [ > (% - %)
3 (% - KB % - %)+ B X~ R ve - e)]
>, (% - %)
B (%) 3 (- X)X - %)+ -f)L
i Zi(xﬂ_xl)z E[,él]gbxlﬁr@[zlél]<ﬂ1 ;

:ﬁ1+,82E[Z'(X —X)( X, ] 2)+‘9 E)] B+ B, E[Zi(xﬂ_y()(xz_yz)]

(X = X)) > (% = %)
g B = g4 CMX X]
A S (%, -X T Co\ X, X]=B,+ 5, Var[X]

The estimated parameter is biased, with bias linear in the true parameter on
the left-out variable, and the covariance of the left-out variable with the
included variable.



Violating Assumption 3: Cov(X,€,) =0

* We saw that correlated missing regressors
iInduce bias.

e S0 does biased sample selection and reverse
causality

e Consider correlated missing regressors.



Endogeneity in a Scatter-Plot

Endogeneity is easy to draw.
Consider a 1 variable (with intercept) model

Let the conditional mean of the error term
also rise linearly with the included variable

Draw the true regression line and the data

The OLS regression line will pick up both the
slope of Yin X and the slope of the conditional
mean of the error with respect to X.



General Endogeneity Bias

Endogeneity bias shows up in the Ballentine
diagrams.

Correlated missing regressor: x2 is invisible.

What does the OLS estimator do to the (x1,x2)
overlap?

more generally, some of what looks like (x1,y)
is really the model error term, and not (x1,y).



Correcting for Endogeneity

Endogeneity is like pollution in the X.

You need information that allows you to pull
the pollution out of the X.

Including missing regressors is like identifying
the pollution exactly, so that you can just use
the X that is uncorrelated with that pollution.

Alternatively, you could find a part of the
variation in X that is unpolluted by
construction.



Instrumental Variables

e Instruments are variables, denoted Z, that are
correlated with X, but uncorrelated with the
model error term by assumption or by
construction.

e Cov(Z,e)=0, so in the Ballentine, Z and the
error term have no overlap.

e But, (Z,X) do overlap



2-Stage Least Squares

Regress Xon Z
— generate X =E[X|Z], the predicted value of X given Z.

— This is “clean”. Since Zis uncorrelated with the model
error term, so is any linear function of Z.

Regress Y on X
This regression does not suffer from endogeneity

But it does suffer from having less variance in its
regressor.



Violating Assumption 4

Recall Assumption 4 of the CLRM: that all errors have the samance. That
IS,
Var(g) =c?foralli=1,2,...n
Heteroskedasticityis a violation of this assumption. It occurs if different
observations’ errors have different variances. For example,
Val'(el) - Giz
— In this case, we say the errors heteroskedastic.

Becaustheteroskedastici violates an assumption of the CLRM, we know
least squares is not BLUE when the errors are heteroskedastic.

Heteroskedasticity occurs most oftercnass-sectionabdata. These are data
where observations are all for the same time period (e.g.tieuear month,
day, or year) but are from different entities (e.g., peopiasii provinces,
countries, etc.)



Inefficiency

* Why is OLS inefficient when we have pure
heteroskedasticity?

e |tis because there is another linear estimator
that uses the data better, and can deliver a lower-
variance estimated coefficient

 Eg, what if some observations had zero-variance
on their errors, but others had positive variance
— A linear estimator that delivers a lower-variance

coefficient is to run OLS on only those observations
with zero-variance. Trash all the rest of the data




What to do if errors are heteroskedastic ...

. If you find evidence of heteroskedasticity — whett@ough a formal
test by looking at residual plots — you have sevepébns

1. Use OLS to estimate the regression and “fix"dtaadard errors

A. We know OLS is unbiased, it’s just that the usual formula fosthAedard
errors is wrong (and hence tests can be misleading)

B. We can getonsistentestimates of the standard errors (as the sample size
goes to infinity, a consistent estimator gets arbitrarily clogbe true
value in a probabilistic sense) calMthite’s Heteroskedasticity-
Consistentstandard errors

C. When specifying the regression in EViews, click the OPTICS aheck
the “Coefficient Covariance Matrix” box, and the “White” button

D. Most of the time, this approach is sufficient

2. Try Weighted Least Squares (WLS) — if you knowgbarce of the
heteroskedasticity and want a more efficient estbma

3. Try re-defining the variables — again, if you thyou understand the
source of the problem (taking log of dependentalde often helps)



Violating Assumption 5

 Serial correlation occurs when one observation’s error teghig
correlated with another observation’s error tesjn Corr(s;, &) # 0

* We say the errors aeerially correlated

« This usually happens because there is an impag&tionship
(economic or otherwise) between the observatioxaniples:

— Time series data(when observations are measurements of the same
variables at different points in tin
— Cluster sampling (when observations are measurements of the same
variables on relatesubjectse.g., more than one member of the same
family, more than one firm operating in the same market, etc.)
« Example: Suppose you are modeling calorie consumption with data on a
random sample of families, one observation for each family member.

Because families eat together, random shocks to calorie consumjgtion (
errors) are likely to be correlated within families.

 Serial correlation violates Assumption 4 of the GILRSo we know
that least squares is not BLUE when errors aralbedorrelated.



Consequences of Serial Correlation

We know that serial correlation violates Assumption 4 of the CL&M,hence
OLS is not BLUE. What more can we say?

OLS estimates remain unbiased

We only need Assumptions 1-3 to show that the OLS estimator is uthpiesee
a violation of Assumption 4 has no effect on this property

The OLS estimator is no longer the best (minimum variance) lumdaased
estimator

Serial correlation implies that errors are partly predictdide example, witl
positive serial correlation, then a positive error today impiestrow’s
error is likely to be positive also. The OLS estimator igndmiss t
information; more efficient estimators are available that do not.

Standard formulae for standard errors of OLS estimates angwr

Standard formulae for OLS standard errors assume that errarstaerially
correlated — have a look at how we derived these in lecture 12 (@edchee
use assumption 4 of the CLRM). Since our t-test statistic depenitiese
standard errors, we should be careful about doing t-tests in the mresenc
serial correlation.



What to do if errors are serially correlated ...

« Ifyou find evidence of serial correlation — whetltierough a formal
test or just by looking at residual plots — you hageeral options
available to you

1. Use OLS to estimate the regression and “fix"dtandard errors

A. We know OLS is unbiased, it’s just that the usual formula for the
standard errors is wrong (and hence tests can be misleading)

B. We can geconsistentestimates of the standard errors (as the sa
size goes to infinity, a consistent estimator gets arbitralolye to the
true value in a probabilistic sense) caldelwey-Weststandard errors

C. When speufymg the regression in EViews, click the OPTIOMS t
check the “coefficient covariance matrix” box and the “HAC Newey-
West” button

D. Most of the time, this approach is sufficient

2. Try Generalized Least Squares (GLS) — If you veamtore efficient
estimator



Violating Assumption 6: Cou(X,, X,) #0

* Recall we assume that malependent variable isperfect linear function of any
other independent variable.

— If a variableX,; can be written as a perfect linear functiorkef X;, etc., then we say
these variables aperfectly collinear.

— When this is true of more than one independentabéi they arperfectly
multicollinear.

« Perfect multicollinearity presents technical problems for comguhe least
squares estimat

— Example: suppose we want to estimate the regression
Y. = B+ B Xy + Xy + ¢ whereX, = 2X, + 5.
That is,X; andX, are pen‘ectly collinear. Whenevkj increases by one unit, we
increaselby 2 units, andincrease by 2, + S, units. Itis completely arbitrary whether
we attribute this increase ¥ito X;, to X,, or to some combination of them. Xf is in the
model, therX, is completely redundant: it contaiagactly the same information a§
(if we know tﬁe value oX;, we know the value of, exactly, and vice versa). Because
of this, there is no unique solution to the leagtases minimization problem. Rather,
there are an infinite number of solutions.

— Another way to think about this exampfg:measures the effect &f on Y, holding X,
constant. Becausg andX, always vary (exactly) together, there’s no waydtneate
this.



Imperfect Multicollinearity

It is quite rare that two independent variables havexatlinear relationship

— it’s usually obvious when it does happen: e.g.,“thenmy variable trap”
However it is very common in economic data that two (or more) indepevaleaibles
are strongly, but not exactly, related

— in economic data, everything affects everything els
Example:

— perfect collinearity: Xii = ag+ 01Xy

— imperfect collinearity  X;;=ay+ a;X;;+ { where( is a stochastic error te
Examples of economic variables that are strongly (but not exactygdel

— income, savings, and wealth

— firm size (employment), capital stock, and revenues

— unemployment rate, exchange rate, interest ratd t@posits
Thankfully, economic theory (and common sense!) tell us these vaneibilbs
strongly related, so we shouldn’t be surprised to find that they are ...
But when in doubt, we can look at th@mple correlationbetween independent
variables to detect imperfect multicollinearity

When the sample correlation is big enough, Assumption 6 is “almosttedola



Consequences of Multicollinearity

e Least squares estimates are still unbiased

e recall that only Assumptions 1-3 of the CLRM
(correct specification, zero expected error,
exogenous independent variables) are
required for the least squares estimator to be

unbiased

e since none of those assumptions are violated,
the least squares estimator remains unbiased



